
Taskwarrior Capsules Documentation
Release 0.3

Adam Coddington

January 26, 2017

Contents

1 About 3
1.1 Installation . 3
1.2 Using Capsules . 3
1.3 Finding Capsules . 3

2 Commands 5
2.1 capsules <subcommand> . 5

3 Writing your own Capsules 7
3.1 Your Capsule . 7
3.2 Your setup.py . 10

4 Indices and tables 11

i

ii

Taskwarrior Capsules Documentation, Release 0.3

Contents:

Contents 1

Taskwarrior Capsules Documentation, Release 0.3

2 Contents

CHAPTER 1

About

Taskwarrior Capsules allows you to easily extend Taskwarrior functionality by allowing you to add new commands
and alter the behavior of existing ones.

1.1 Installation

1. Install from Pip:

pip install taskwarrior-capsules

Please note that you might need to run the above command with sudo.

2. Install some capsules (read: plugins) and follow their documentation.

Taskwarrior Capsules itself does not offer any meaningful functionality; to use Taskwarrior Capsules, you’ll want to
install some capsules.

1.2 Using Capsules

Taskwarrior Capsules wraps task using a separate command – tw, but all commands that are not recognized by
Taskwarrior Capsules will be passed-through to Taskwarrior itself verbatim.

To make this clearer: to use Taskwarrior Capsules, rather than listing your tasks with task, use:

tw

And rather than adding a task with task add Homework due:tomorrow priority:h:

tw add Homework due:tomorrow priority:h

And for other Taskwarrior commands, just be sure to type tw instead of task.

1.3 Finding Capsules

Search for some capsules on github.

3

https://github.com/search?utf8=%E2%9C%93&q=taskwarrior+capsule

Taskwarrior Capsules Documentation, Release 0.3

4 Chapter 1. About

CHAPTER 2

Commands

Taskwarrior Capsules provides only one command on its own – capsules – but allows you to install ‘capsules’
providing additional functionality. See Finding Capsules for more information about how to find capsules.

2.1 capsules <subcommand>

You can use this command to manage your installed capsules; currently only a single subcommand is implemented:
list.

2.1.1 Subcommands

• list: List installed capsules.

5

Taskwarrior Capsules Documentation, Release 0.3

6 Chapter 2. Commands

CHAPTER 3

Writing your own Capsules

Note: Rather than reading this document, you could perhaps have a look at one of the existing capsules. For a fairly
simple example, have a look at the Capsule implementation of Taskwarrior’s “context” function: taskwarrior-context-
capsule.

Writing your own capsule is easy; all you really need is a single class subclassing
taskwarrior_capsules.capsule.CommandCapsule and an entry mapping a command name to it
in your new capsule’s setup.py.

3.1 Your Capsule

from taskwarrior_capsules.capsule import CommandCapsule

class MyCapsule(CommandCapsule):
""" A brief description of what your capsule does.

The first line of this will be displayed next to the capsule's
name when a user runs ``tw capsules list``.

"""
Define the minimum and maximum versions of Taskwarrior-Capsules
that this capsule is known to work with; note that Taskwarrior-Capsules
follows semver, so you can (hopefully) rely upon breaking changes
only occurring with major version bumps.
MIN_VERSION = '0.3'
MAX_VERSION = '0.9999.9999'

Define the minimum and maximum versions of Taskwarrior that your
capsule is known to work with.
MIN_TASKWARRIOR_VERSION = '2.3'
MAX_TASKWARRIOR_VERSION = '2.4.9999'

Note that if your capsule does not actually interface with
taskwarrior at all, you can just set the following property
to `False` and forgo setting the above MIN and MAX taskwarrior
versions.
TASKWARRIOR_VERSION_CHECK_NECESSARY = True

def handle(self, filter_args, extra_args, **kwargs):

7

https://github.com/coddingtonbear/taskwarrior-context-capsule
https://github.com/coddingtonbear/taskwarrior-context-capsule

Taskwarrior Capsules Documentation, Release 0.3

""" Do the work involved when your command is executed directly here.

This method will be called with a number of positional
parameters:

* `filter_args`: Arguments appearing before the command.

* `extra_args`: Arguments appearing after the command.

As well as an indeterminate number of keyword arguments
including (at the time of this writing):

* `command_name`: The name of the command currently
being executed.

* `terminal`: An instance of ``blessings.Terminal`` for
the current terminal. You can use this for formatting
printed text.

"""
pass

def preprocess(self, filter_args, extra_args, **kwargs):
""" Do the work you'd like to do *before* *any* command is executed.

This command receives all keyword arguments that ``handle``
above receives.

Please note that if you'd like to only run the preprocessor
for specific commands, in this method you'll need to check
that ``kwargs['command_name']`` matches the command for which
you'd like this preprocessor executed.

Using preprocessors, you are **required** to return a 3-tuple
of values:

* `filter_args`: A list of arguments to use for filtering
when the next command is executed. If your preprocessor
does not need to alter `filter_args`, simply return the
`filter_args` that were passed-in.

* `extra_args`: A list of arguments to return *following*
the command name. If your preprocessor does not need to
alter `extra_args`, simply return the `extra_args` that
were passed-in.

* `command_name`: The name of the command that should be
executed. You can change the command name by returning
a different command-name than was passed in. Note that
`command_name` is is incoming as a keyword argument; you'll
need to either specify it in your method signature, or
access it as ``kwargs['command_name']``.

"""
pass

def postprocess(self, filter_args, extra_args, **kwargs):
""" Do the work you'd like to do *after* *any* command is executed.

Note that this shares most characteristics with the above
``preprocess`` method, but receives a single extra keyword
argument -- ``result`` -- and does **not** need to return

8 Chapter 3. Writing your own Capsules

Taskwarrior Capsules Documentation, Release 0.3

anything at all.

* `result`: The return code returned by taskwarrior
after the command was executed.

"""
pass

Warning: There are several things only gleaned at above that you should take special care about:
• When writing your capsule class, it is very important that the last argument of your handle, preprocess,

and postprocess methods be **kwargs; the keyword arguments passed to those methods may change
at any time even when releasing a bugfix patch.

• Be conservative when setting MIN_VERSION, MAX_VERSION, MIN_TASKWARRIOR_VERSION, and
MAX_TASKWARRIOR_VERSION; when a user upgrades his or her version of Taskwarrior or Taskwarrior-
Capsules to a newer version than you specify, they’ll still be able to continue using your capsule, they’ll
just see a warning message indicating that your capsule is not compatible with the version of Taskwarrior or
Taskwarrior Capsules in use. This can be extremely helpful information for users chasing down unexpected
behaviors!
If you absolutely need to prevent users from using a specific version of Taskwar-
rior or Taskwarrior Capsules, use the self.get_taskwarrior_version or
self.get_taskwarrior_capsules_version methods and raise an instance of
taskwarrior_capsules.exceptions.CapsuleError with a helpful error message explaining
the incompatibility.

3.1.1 Available Methods

All Capsules inherit the following methods:

• get_taskwarrior_version(): Returns an instance of verlib.NormalizedVersion correspond-
ing with the version of Taskwarrior currently in use.

• get_taskwarrior_capsules_version(): Returns an instance of verlib.NormalizedVersion
corresponding with the version of Taskwarrior Capsules currently in use.

• get_matching_tasks(filters): Returns tasks matching the specified filters; you can pass your
filter_args directly to this method to return dictionary-like objects representing matching tasks. Each
task is an instance of taskw.task.Task.

• get_tasks_changed_since(datetime): Returns tasks that have been changed since the time specified
by the datetime.datetime object passed-in.

And the following properties:

• capsule_name: The name of the capsule (as specified in the setup.py file installing it).

• client: An instance of taskw.warrior.TaskWarriorShellout allowing one to interact with
Taskwarrior via an object-oriented interface. See taskw’s documentation for more information.

• configuration: An editable dictionary-like object that stores local per-capsule configuration. If modifica-
tions are made to this object, be sure to call .write() to write the changes to disk. Note that configuration
files are stored in ~/.taskwarrior-capsules/<capsule_name>.ini, but that encouraging users to
hand-modify the configuration file is discouraged.

• global_configuration: A dictionary-like object storing Taskwarrior Capsules’ configuration. This file,
too, is editable, but editing is discouraged.

3.1. Your Capsule 9

https://github.com/ralphbean/taskw/blob/03b908bcedb0bc36d4c8f5f9b1fc62271296417b/taskw/task.py#L26
https://github.com/ralphbean/taskw

Taskwarrior Capsules Documentation, Release 0.3

• meta: An instance of taskwarrior_capsules.capsule_meta.CapsuleMeta storing metadata
about the Taskwarrior Capsules environment.

3.2 Your setup.py

For registering your capsule, you’ll want to make sure you’ve written a valid setup.py for installing your capsule,
and used the proper entrypoints depending upon what methods you’ve implemented above.

• For capsules adding additional commands, you need to register your capsule using the
taskwarrior_capsules entrypoint.

• For preprocessor capsules, you need to register your capsule using the
taskwarrior_preprocessor_capsules entrypoint.

• For postprocessor capsules, you need to register your capsule using the
taskwarrior_postprocessor_capsules entrypoint.

The below setup.py is a (fairly) minimal example of a setup file registering a new capsule executable with the
command tw example:

from setuptools import setup, find_packages

setup(
name='taskwarrior-example-capsule', # Please follow this example for

naming your capsule so they are
easy for people to find when searching

version='0.1', # Your capsule's version number. Where reasonable,
we recommend that you follow semver principles.

url='https://github.com/yourname/taskwarrior-example-capsules', # The URL at which
your package is hosted.

description=(
'This capsule does something that helps someone.'

), # A brief description of what your capsule does
author='Adam Coddington',
author_email='me@adamcoddington.net',
packages=find_packages(),
entry_points={

'taskwarrior_capsules': [
'example = module.path.to.your.capsule:YourCapsuleClass',

], # This is the most important part!
},

)

Pay special attention to the entry_points section above! The name of the command is to the left of the = sign,
and the module path to your class is to the right, using a : to separate the module path from your class’s name.

10 Chapter 3. Writing your own Capsules

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

11

	About
	Installation
	Using Capsules
	Finding Capsules

	Commands
	capsules <subcommand>

	Writing your own Capsules
	Your Capsule
	Your setup.py

	Indices and tables

